テラヘルツ波誘電体加速による 高電界加速器の新展開

KEK: 吉田 光宏, 張 叡, 周 翔羽,
本田 洋介,森 伸悟
分子研/理研: 平等 拓範, 石月 秀貴,
Arvydas Kausas, Yahia Vincent,
他未来社会創造事業レーザーG

超高電界加速の方式

エネルギー源と電界

	常伝導	超伝導	電子ビーム 駆動	レーザー 駆動	陽子ビーム駆動
	6/12GHz	1.3GHz	5THz (50fs)	5THz (50fs)	? THz (後述)
駆動 エネルギー	20J [/m] = 40MW × 500ns	200J [/m] = 300kW × 700μs	70J (SLAC) =23GeV × 3nC 35J (KEK) =7GeV × 5nC	<u>40J (→ 1kJ)</u>	15kJ (SPS) = 450GeV × 30nC 150kJ (LHC) = 7TeV × 20nC <u>300kJ (J-PARC MR)</u> = 40GeV × 8μC
電界	40/80MV/m 放電限界	40MV/m クエンチ	20GV/m × 2m = 40 GV	10 GV/m	?
繰り返し	50Hz	5Hz	50Hz	10Hz	1/18 Hz (SPS) 0.3 Hz (J-PARC MR)
ビーム電力 /駆動/AC	400W / 1 kW / 8 kW (1m辺り)	10 MW / 23 MW / 150 MW (ILC)	? / 3.5 kW / 70 kW	4 W ? /400W /4kW(LD)	? / 833W/75MW (SPS) / <u>300kW/25MW</u> (J-PARC)
効率	5% ?	8%	5%(電子生成) ×η(e→e)	現状 0.1 % → 10 %?	1%(陽子ビーム生成) × ŋ(p→e)

THz加速の有効性

- THz の誘電体加速 12 GV/m が World Record 実用上は <u>1 GV/m</u> 程度が利用しやすい (加速器の全長が 1/30 になるので十分高い電界)
- ・装置が簡単(ガラスの筒しかない)
- ・ プラズマ加速と比べて追加速に利用し易い
 超高真空に対応 / 収束力の問題が無い / 散乱無
- THz 加速器の KEK/分子研/理研での実証試験
- ビーム駆動による
 追加速の実証実験

分子研・理研との協力による 高強度THz源開発

THz 加速器に必要なレーザー

- 電子加速器についての前置き(必要な電界強度)
 Linear Collider
 - XFEL
- RF 加速器からの追加速に必要なレーザー性能
 パルス幅 ~300fs (位相空間から)
 バースト (効率から)
- ・レーザー固有の問題
 - LD – 効率
- KEKにおける超高電界追加速に関する紹介
 レーザー開発方針:
 - All マルチパスアンプ (No regen) Nd/Yb/Ti:Sapphire - アフターバーナー(追加速)の試験スタンド

高エネルギー物理での 超高電界加速への期待

e+e- Collderの歴史

Can reach very high energies to discover new particles / phenomena.

Electron + Positron: collision of fundamental particles

All the energy participates in the reaction. The collision energy is tunable. Given sufficient energy, unparalleled discovery power and measurement precision

June 22, 201 HC + ILC = determine new laws of nature

Linear Collider (ex. ILC)

リニアコライダーでは

・1-pass 衝突のためビームサイズを極限まで縮める必要がある(超低エミッタンスが必須)
 /加速勾配によらずに全長は 10km 以下にはならない → 必要電界は 数100MV/m
 ・高効率にするにはマルチバンチ ~10000バンチ程度の加速が必要

現在の計画では 250GeV (H+Z生成ギリギリで, H self-coupling 測定できない) → 500 GeV/1TeV 増強の道筋(現時点では高電界の超伝導が候補?) → 他の高効率・高電界加速の可能性を考えたい

XFEL光源でのTHzへの期待

XFELでのテラヘルツ加速への期待

- THz-Deflector によるバンチ長/構造の観測
- バンチ圧縮によるFELゲインの向上
- ・アト秒バンチ生成
- 超小型XFEL

XFEL/軟X線FEL

常伝導加速器 LCLS 120Hz SACLA 60Hz

超伝導加速器 (高繰り返し) Euro-XFEL 27 kHz LCLS-II 300 kHz

小型化のための高電界加速の候補:

レーザープラズマ加速 ビーム駆動プラズマ加速 レーザー駆動THz 加速 ビーム駆動THz加速 > 100GV/m だが、繰り返しを上げる方法 超伝導加速器駆動 (Flash Forward) <1 GV/m >10 GV/m <u>バーストモードが可能</u>

超高ゲインXFELの提案 ALFA BL-D

XFELでの光のスリッページ:電子は1周期進むたびに光の波長λの距離だけ遅れる

超高ゲイン XFEL : スリッページ内で増幅する事で 短いパルス幅のX線を得る

アンジュレーター長が長いほどパルス幅が増加 λ=3nmの場合、スリッページ1回毎に パルス幅は10as増加 通常のXFELではX線のパルス幅は 電子のパルス幅より長い

SACLA: 8.2 GeV, 150 pC, 3.5 kA (40 fs) $\lambda_{\rm U} = 18 \text{ mm} \times 277 \text{ period } (5\text{m}) \times 18, K = 2$ $\rightarrow \rho = 4 \times 10^{-4}, L_{\rm g} = 2 \text{ m}, \lambda_{\rm L} = 0.1 \text{ nm}$ ALFA: 2.3 GeV, 40 pC, 50 A (0.8 ps) \rightarrow 10 kA (4 fs) $\lambda_{\rm U} = 30 \text{ mm} \times 110 \text{ period } (3.4 \text{ m}) \times 1, K = 2.5$ $\rightarrow \rho = 5 \times 10^{-3}, L_{\rm g} = 0.25 \text{ m}, \text{ gain} = 5000, \lambda_{L} = 3 \text{ nm}$

ALFA BL-D

-10

レーザー加速で必要な加速パラメーター

パルス幅 ~300fs (位相空間から) バースト (効率から)

ビームの位相空間 → パルス幅(周波数)

• 横方向位相空間

$$\sigma_{x} = \sqrt{\varepsilon_{n}\beta/\gamma}$$
$$\delta_{x} = \frac{\delta p}{p} = 1 - \cos\frac{2\pi\sigma_{x}}{\lambda} \approx \frac{\pi^{2}\sigma_{x}^{2}}{2\lambda^{2}} = \frac{2\pi^{2}\varepsilon_{n}\beta}{\lambda^{2}\gamma}$$

1 GeV, ɛn=1µm•rad, β=1m → σx=20µm Energy Spread = 1-cos(2π σx/λ) = 0.01%(λ=10mm), 0.4% (λ=1.5mm = 2ps = 200GHz) 10 % (λ=0.3mm = 400fs = 1 THz) そもそも 30fs だと位相空間に入らない

• 縱方向位相空間

$$\delta = \frac{\delta p}{p} = 1 - \cos \omega \sigma_{T}$$

σ_T = 30 fs
 Energy Spread = 1-cos(ω σT)
 = 0.7% (λ=1.5mm = 2ps = 200GHz)
 2% (λ=0.3mm = 400fs = 1 THz)
 そもそも 30fs だと位相空間に入らない

加速効率: Accelerator pulsed operation

• RF accelerator operates burst micro bunch

誘電体加速

Dielectric Laser Acceleration (DLA): グレーティング構造にレーザーを照射して 表面を走行する電子を加速する方式 1µm帯:東京大学/上坂研との共同開発小山先生基盤B THz帯: 分子科学研究所との共同開発 Dielectric Lined Circular Waveguide (DLW): キャピラリーに超短パルス電子ビームを 通す際に生じる超高電界のTHz航跡場で 後続のビームを加速する方式 産業技術総合研究所で実験→現在KEK/分子研/理研 **Dielectric Wall Accelerator** 光伝導スイッチ(PCSS)を用いて誘電体伝送路 を高速にスイッチして加速電界を得る

東京大学/上坂研究との共同開発 基盤A

Breakdown Limits on Gigavolt-per-Meter Electron-Beam-Driven Wakefields in Dielectric Structures

M. C. Thompson,^{1,2,*} H. Badakov,¹ A. M. Cook,¹ J. B. Rosenzweig,¹ R. Tikhoplav,¹ G. Travish,¹ I. Blumenfeld,³ M. J. Hogan,³ R. Ischebeck,³ N. Kirby,³ R. Siemann,³ D. Walz,³ P. Muggli,⁴ A. Scott,⁵ and R. B. Yoder⁶

$$13.8\pm0.7$$
 GV/m.

Fused silica, THz range, ~psec exposure

Mode wavelengths

$$\lambda_n \approx \frac{4(b-a)}{n} \sqrt{\varepsilon - 1} = 0.7 \, mm$$

Peak decelerating field

a = 0.1mm

b = 0.324 mm

 $\varepsilon=3.0(SiO_2)$

q = 5 nC

 $\sigma_z=30\mu m(0.1ps)$

$$eE_{z,dec} \approx \frac{-4N_b r_e m_e c^2}{a \left[\sqrt{\frac{8\pi}{\varepsilon - 1}} \varepsilon \sigma_z + a \right]} = 2GV / m(\sigma_t = 0.1ps)$$

Transformer ratio

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

THz带DLA 用 Si 回折格子

THz 光の加速器の利点:

- 0.1 mm 程度の加速構造
 - ・加速領域の体積が赤外のおよそ 100³倍・加速構造の機械加工が可
- 光(赤外)に近い高い加速勾配(絶縁破壊) ・200 MV/m

THz OI-DLA のための Si 回折格子の加工

Pitch	0.320	$\mathbf{m}\mathbf{m}$
Depth	0.210	mm
Number of Pitches	10	
Material of Wafer	Si	
Thickness of Wafer	0.380	mm
Index of Si @ ~THz	3.4	

THz帯周波数重畳 = モードロック加速管

THz- Dielectric Lines Waveguide (DLW) <u>※ただのガラス管です</u>

DLW

さらに円偏波にすれば回転方向にビームをキック可能になります

THz 加速器の利用

・THz誘電体加速器(ラジアル偏光)による
 バンチ圧縮→尖頭電流向上/アト秒電子生成(10mJ)
 →将来の小型(1/10)高繰り返しXFEL
 (~300 MV/m)

THz-Deflector

ビーム駆動THz加速

まずは超高電界のTHz加速の実証のため

SC_R0_6A ターゲット交換

交換前

SUS筒にセラミックチューブを付けていた。

銅筒に石英管を取り付けるように変更。

ビームラインに復元済み。

• R56=-0.17m → 145MV/1.5GV 必要

Millimeter-wave detector

WR-22 (40-66 GHz) 検波器を設置
 50GHz = 6ps → 2ps 程度のバンチ長に相当

B6 +90deg

ミリ波検出器

→ 今後遅延ラインを導入して マルチバンチ減速 → 後続のバンチを加速

DWAの加速パラメーター(Simulation)

共振器内 DLW の試験 穴径の2mm, 100GHz帯

今月インストール済 → 10月に試験

レーザー駆動THz加速

MgO:PPLN / OPA THz generation

- MgO:PPLN : Pole=212µm, 10x20x L=40mm (damage threshold : 1 J/cm2 => <u>target : 2J input</u>)
- τ=1ps, Δt ~1ps

レーザー駆動の THz-DLW

分子研製の大型の MgO:PPLN

• 10 mm thickness

5% 変換効率が得られれば 2J → 100mJ THz が可能なはず

レーザー固有の問題

エネルギー源と電界

	常伝導	超伝導	電子ビーム 駆動	レーザー 駆動	陽子ビーム駆動
	6/12GHz	1.3GHz	5THz (50fs)	5THz (50fs)	? THz
駆動 エネルギー	20J [/m] = 40MW × 500ns	200J [/m] = 300kW × 700µs	70J (SLAC) =23GeV × 3nC 35J (KEK) =7GeV × 5nC	10J	15kJ (SPS) = 450GeV × 30nC 150kJ (LHC) = 7TeV × 20nC 300kJ (J-PARC MR) = 40GeV × 8μC
電界	40/80MV/m 放電限界	40MV/m クエンチ	20GV/m × 2m = 40 GV	10 GV/m ?	
繰り返し	50Hz × N	5Hz × N	50Hz × N	10Hz	1/18 Hz (SPS) 0.3 Hz (J-PARC MR)
ビーム電力 /駆動/AC	400W / 1 kW / 8 kW (1m辺り)	10 MW / 23 MW / 150 MW (ILC)	? / 3.5 kW / 70 kW	4 W ? /400W /4kW(LD)	? / 833W/75MW (SPS) / 300kW/25MW (J-PARC)
効率	5%	8%	5%(電子生成) ×η(e→e)	現状 0.1 % ?	1%(陽子ビーム生成) × η(p→e)

Laser Diode

• Laser Diode Stack

×帯域幅 3nm (DB)

- △ビームパターンを成形する方法が必要
- QCW(Duty ~3%) では kW/bar 位まで到達
 - 3% / 100Hz = 300µs (これ以上の蛍光寿命は不要)
 - 25万円/kW×3%=30W(CW) →1000万円/kW
- -CW
 - 100万円/kW → 1kHz でも 1ms の蛍光寿命が必要
- Fiber Bundle
 - QCW 50万円/kW, 150万円/kW
- VCSEL

×励起密度低い 150W/chip → Nd:YAG side pump OQCW~CW まで連続 O狭帯域

VCSELタイプの Nd:YAG DPSS Module

VECSEL DPSS Module

Madal Na	Nd:YAG Diameter	VCSEL	Pump Power	Pulse Energy
Wodel No.	(mm)	Chips	@200us,100Hz	@200us, 100Hz
SLD-3x3-3	ф 3	9	1350 W	>68 mJ
SLD-3x3-4	φ 4	9	1350 W	>68 mJ
SLD-3x3-8	ф 8	9	1350 W	>81 mJ
SLD-3x4-3		12	1800 W	>90 mJ
SLD-3x4-4	φ 4	12	1800 W	>90 mJ
SLD-3x4-8	Φ 8	12	1800 W	>108 mJ

Model No.	Nd:YAG Diameter	VCSEL	Pump Power	Pulse Energy
	(mm)	Chips	@200us,100Hz	@200us, 100Hz
SLD-5x3-3	Φ3	15	2250 W	>113 mJ
SLD-5x3-4	φ 4	15	2250 W	>113 mJ
SLD-5x3-8	Φ8	15	2250 W	>135 mJ
SLD-5x4-3	Φ3	20	3000 W	>150 mJ
SLD-5x4-4	Φ 4	20	3000 W	>150 mJ
SLD-5x4-8	Φ8	20	3000 W	>180 mJ

Φ8, 3 kW, 5方向励起 🗖

VCSEL vs LD Bar

Parameters	VCSEL	LD Bar	VCSEL Advantages
EO efficiency	40~50%	50~60%	-
Spectrum width	~1nm	~3nm	Narrow spectrum
Wavelength-temperature shift	0.06nm/K	0.3nm/K	Very stable for pumping
Long time wavelength shift	No	Yes	Very stable for pumping
Optical damage threshold	No COD	Terrible COD	High damage threshold
Direct heat conductive area	Big	Small (by FF)	Easy heat sinking
Heat stress during pulsing	Low	Very high	Long pulsed life time
Max operation temperature	>85 Deg.C	35~45 Deg.C	High temperature operation
Current inrush sensitivity	None-Sensitive	Very Sensitive	Very robust to driver
Voltage-current relation	Linear	None-Linear	Very simple driver design
Chip-water isolation	Isolated	Connected	No need de-ionized water
CW life time	10~20K hours	10~20K hours	-
Pulsed life time (20ms pulsing)	~100M shots	~10M shots	10 times longer life time
QCW life time (250us pulsing)	>20G shots	1~2G Shots	+10 times longer life time
Operation Mode	CW & Pulsed	CW or Pulsed	Free modulation in all mode
Power degradation	Near-Linear	None-Linear	Life time can be expected
Manufacture cost & price	Low	High	Very low cost

VCSEL: 1.6~3.8V/Bar, 808nm(1nm) 40~45%

KEK版QCWレ<u>ー</u>ザーダイオードスタック

- QCW LD Stack : 30万円/kW (Fiber Bundle の 1/5)
- 350W/bar × 25bar = 8.75 kW × 250µs > 2J/stack
- FACの精密アラインメントで均一な励起パターン
- 開発した安価な大電流パルスドライバ

励起光プロファイル

右からの励起

左からの励起

• 250µs x 120Hz = 3%を保証

2.1 絶対最大定格

瞬時でも超過してはならない限界値で示し、どの一つの定格値も超えてはならないものとする。

	項目	記号	定格	単位
パル	ス順電流	Ifp	350	А
ピー	ク光出力	$arPsi_{ ext{ep}}$	9.0	kW
パル	ス幅	$t_{ m w}$	250	μs
デュ	ーティ比	DR	3.0	%
逆電圧		$V_{\rm r}$	2.0	V
動作周囲温度		$T_{\mathrm{op}(\mathbf{a})}$	+5 \sim +40 $^{\pm1)}$	°C
保存温度		$T_{ m stg}$	$_{0}$ ~ +50 $^{\pm 1)$ $^{\pm 2)}$	°C
動作および保存湿度		_	50	%
冷	冷却水媒体	_	市水	_
却水条	冷却水温度(冷却水 IN 侧)	_	+15 \sim +30	°C
	冷却水圧力 (ヒートシンク部)	_	0.3 注3)	MPa
14	冷却水流量 (全体)	_	$0.8 \sim 1.8$	L/min

KEKにおけるレーザー開発

- 全てのレーザーシステムが Multi-pass
 - マルチバンチ / Enhancement Cavity に対応
- 将来的には小型のシステムを多数使用
- Yb系レーザー開発
 - 分子研製常温接合の Think Disk を使用
 - 室温 Yb:YAG → 冷却 Yb:YAG
- Ti:Sapphire 系の増強
 - Nd:YAG DFC pump laser の導入 (未来社会創造事業 / 平等レーザー開発G)
- Chirped PPLN への期待

Yb:PCF/YAG + OPCPA + MgO:PPLN

Yb-fiber laser system

1064nm

Oscillators (1025-1065 nm)

Yb:YAG High gain multi-pass amplifier (10-15 pass)

分子研製 常温接合 Yb:YAG Thin Disk (Kausasさん)

Ex. Our Yb:YAG thin disk loop mulit-pass amplifier

冷却 Yb:YAG / PPLN

分離型ヘッドのパルスチューブを使用 (無振動)

Silicon wafer with metal THz mesh filter x 3 Detector

Nd:YAG - DFC 高強度レーザー開発

• 増幅率

- 8 kW x 4 (両方向On-Axis励起) x 250µs = 8 J / cm²

- G= 5 for L(Nd:YAG) = 1.3cm(1/e²) (2-passで50倍)

• Pump(885nm) Output 4 stack(32kW, 8J) \rightarrow 2 J \rightarrow 1 J @ SHG

Nd:YAG DFC

• 0.65t x 9 Nd:YAG + 2t x 10 Sapphire = 25mm

2J DFC増幅器実証試験

• 1 cm^2 , $4 \text{ stack}(8.85 \text{ kW x } 4 = 8.8 \text{J}) \rightarrow 2 \text{ J} \rightarrow 1 \text{J} @ \text{SHG}$

2J Nd:YAG DFC

• 8 kW x 250us x 4 = 8 J pump

• 8 kW x 250us x 3 = 6J pump \rightarrow x 2 12J pump

- 15mm x 15mm DFC
- 750W/bar × 27bar = 20 kW (現在の2.5倍)
 - 1.5mm ピッチ→ 2.5mm ピッチ

KEKにおける超高電界加速による ステージング加速に向けた準備

KEK におけるステージング加速の試験

8 GeV LINAC Third Switch Yard

Experimental area for laser plasma after burner

Experimental area for laser plasma after burner

Ti:Sapphire Laser from U-Tokyo Uesaka-lab

THALES α -10 + Oscillator

まとめ

- 超高電界 (> 数100MV/m)の加速方式
 THz 加速
- そのためのレーザー開発 / THz発生
 2J 程度で必要十分, 50Hz 動作が必要
 - Yb 系レーザーでの実証実験

– THz - PPLN

プロト ステージ タイプ ゲート Nd:YAG DFC:1cm² 2.5 cm² 励起 885nm LD stack: 8kW x 4 = 8J 20kW x 4=20Jx2 1064nm: 2J 10J 532nm: 1J 5J Ti:Sapphire: 0.5 J 2.5J 10 TW 50 TW