High energy laser amplifier by direct-bonded DFC chip

Arvydas Kausas

akausas@ims.ac.jp

Institute for Molecular Science, Okazaki 2020/07/08

Acknowledgements

https://www.jst.go.jp/impact/sano/ https://www.jst.go.jp/impact/index.html https://www.jst.go.jp/mirai/jp

- This work was funded by ImPACT project, Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).
- This work was partially supported by JST-Mirai Program Grant Number JPMJMI17A1, JAPAN

Taira group, Okazaki

Taira lab group members

H. Ishizuki Y. Sato V. Yahia T. Kawasaki H. Lim

T. Kondo, for building bonding machine for Taira group

Outline

o Motivation

- \circ DFC concept
- Surface activated bonding
- CW and pulse laser operation
- o 300 mJ amplifier system
- \circ Discussions
- \circ Conclusions

19-crystal composite chip comprised of sapphire and ceramic Nd³⁺:YAG crystals

Motivation for compact systems

Space/Sea

Tiny-integrated system

Ubiquitous power laser

Motivation for compact systems

OUR AIM

- Compact amplifier system
- Pulse energy = 2J
- Repetition rate = 100 Hz

Current limitation: heat generation

Power scalability for various laser configurations

	Rod	Fiber	Thin disk	DFC
Shape Parameter	A short L	small area	large area <i>A</i> one-side face cooling thin <i>t</i>	double-side face cooling A h
Maximum extractable power	$P_{ex} = \frac{8\pi R_T L}{\chi}$	$P_{ex} = \frac{8\pi R_T L}{\chi}$	$P_{ex} = \frac{12R_T}{\chi} \left(\frac{A}{t}\right)$	$P_{ex} = \frac{24NR_T}{\chi} \left(\frac{A}{t}\right)$
Power scalability	poor	high	medium	high
Gain	medium	high	poor	high
Damage threshold	medium	poor	high	high

DFC: distributed face cooling, R_T : thermal shock parameter, *A*: area of a gain medium, *L*: gain medium length, *t*: gain medium thickness, χ : heating parameter, *N*: number of chips or disks

Research work based on DFC chip

2x power increase compared to same gain length rod laser

Pulsed operation

Energy 21.5 mJ Pulse duration <670 ps Peak power > 32 MW Rep. rate 10 Hz

Lihe Zheng, Arvydas Kausas, and Takunori Taira, "Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser," Opt. Mater. Express 7, 3214-3221 (2017)

Lihe Zheng, Arvydas Kausas, and Takunori Taira, ">30 MW peak power from distributed face cooling tiny integrated laser," Opt. Express 27, 30217-30224 (2019)

DFC concept

Maximum extractable power

Heat management

Surface Activated Bonding (SAB)

b) T. Suga et. al, Acta Metall.Mater. 40, S133-S137 (1992).c) L. Zheng et. al, *Optical Materials Express*, 7(9), 3214 (2017).

TEM and EDX measurements. Reference crystal

TEM and EDX measurements. Annealed crystal

Coated material bonding

(a) Magnification : x 25,000 (b) Magnification : x 20,000,000

TEM analysis of SAB boundary: Coated samples

Ceramic crystal bond (diffusion bond)

No end-cap composite chip

Nd:YAG, <111>, 1.1-at.% Ø5x4 mm Cr:YAG, [110], T₀ =30% Ø5x3.5 mm

Pump Beam size:	0.77 mm
Pump peak power:	150 W
Pump pulse duration:	80 <i>µ</i> s
Repetition rate:	100-1000 Hz

With end-cap composite chip

Output parameters. Pulse energy and duration

- No data after this 700 Hz for no end-cap case
- Heat generation increased

Output parameters. Pulse peak power and depolarization loss

Depolarization loss

• No data after this 700 Hz for no end-cap case

Peak power

Heat generation increased

$$D_{loss} = \frac{s - pol}{(s - pol) + (p - pol)}$$

Beam profile at different repetition rates values

Amplifier setup (High Energy Accelerator Research Organization, KEK)

With prof. M. Yoshida group

Experimental results

50 Hz repetition rate $Q(x, y, z) = \frac{P_{in} \cdot \eta_h \cdot \alpha(z)}{\pi w^2} \cdot e^{-\int_0^l \alpha(z) \cdot dz}$ *Y. Sato et al. in *IEEE JQE*, vol. 40, pp. 270-280 (2004)

Finite element analysis calculation

Pump beam profile:

- Top-Hat profile
- Beam waist is constant along the crystal, 2w = 10 mm

Absorption coefficient in Nd³⁺:YAG crystal:

- Absorption coefficient is constant and does not depend on a temperature, α =1.5 cm⁻¹
- No pump saturation occur* ($I_{pump} \ll I_{saturation,pump}$)

Fractional heat load:

• η_h equal to 0.317

degC

Simulated temperature distribution

Future work

— 8 kW x 4 (両方向On-Axis励起) x 250µs = 8 J / cm²

– G= 5 for L(Nd:YAG) = 1.3cm(1/e²) (2-passで50倍)

• Pump(885nm) Output 4 stack(32kW, 8J) \rightarrow 2 J \rightarrow 1 J @ SHG

Future work. Simulated temperature distribution

Conclusion

- DFC concept is originally developed by SAB for Handheld Intense Tiny Integrated Laser (HITILA)
 - micro-laser energy scaling
 - sub-nanosecond (sub-ns) pulse duration
- We produced composite crystals for CW and Q-switch operation by SAB. The interface between crystal was coated and helped to increase pump absorption efficiency.
- By use 19-crystal DFC chip, amplification up to 300 mJ at 50 Hz repetition rate was achieved.
- We are working towards optimization of amplifier setup and DFC chip in order to achieve 2 J amplifier laser at 100 Hz repetition rate