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1. Introduction - 1.1 Beam shape

~AWhat do we mean by beam shape and beam shaping ?

spatial shape y

temporal shape

energy density

~ Beam shape is critical to maximize the energy density
~ MOPA can increase energy but can it be used to shape the beam ?



1. Introduction - 1.2 Brightness

How to caracterize the influence of beam shape ?
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1. Introduction - 1.2 Brightness

- Radiometric definition of brightness

beam radius

half angle beam divergence

divergence
solid angle

radiant power

emission area

emission solid angle

mode area )
at waist A and Q related by M?
Practical equivalent definition for laser ~
2
A=rmw, A
Q= 71.92 B= P » independent of focusing optics
> o 5)\2 > | proportional to B
) 717W09 (AM ) » M?Zis critical

A

1\ J




1. Introduction - 1.3 MOPA and beam shape control

Brightness is a key parameter

Brightness value for a typical system

r 4
P » wavelength A=1pm
B = 5 » pulseenergy E=100m)
(1M2) » pulse duration =500 ps
» beam quality M?=1
P . peak power B = 20 PW/sr/cm?
A :Zwave Iength. if M2 becomes 1.5
M? : beam quality factor B =9 PW/sr/cm?
\_ \_
-

» brightness scales as ~ P
» brightness scales as ~ (1/M?)?

\

» usually, beam quality degrades as power increases
» brightness might be poor even at high power

Not all oscillators have excellent beam quality hence brightness is reduced




2 Presentation of MOPA system

2.1 General architecture

2.2 Detailed setup

2.3 Experimental results
and performance




2. Presentation of MOPA system - 2.1 General architecture 8
MOPA : Master-Oscillator Power-Amplifier
A A
4 N [ A\
double pass double pass
< > < >
2-3mlJ 5-6mJ 100 - 200 mJ
. ain main
oscillator N S — s
aperture amplifier »
Oscillator Gain aperture Main amplifier
Repetion rate 10Hz/100Hz 10Hz/100Hz 10Hz/100Hz
Wavelength 1064nm 1064nm 1064nm
Input energy Pre-amplification Amplification
Energy 3m] 6mJ 200mJ
Spatial shape Mutimode B EHEEN

near TEMOO

Temporal shape

Temporal shape

Beam stretching

Beam stretching
Beam compression




2. Presentation of MOPA system - 2.2 Detailed setup 9
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2. Presentation of MOPA system - 2.2 Detailed setup
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2. Presentation of MOPA system - 2.2 Detailed setup

IR
Z

lescope

protection of GA

Radtrers

~lte
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N

A N

beam size matching
to main amp




2. Presentation of MOPA system - 2.2 Detailed setup

thermal lensing compensation

polarization rotation and thermal birefringence compensation

AN

6kW QCW
250ps
808nm
100Hz

N




2. Presentation of MOPA system - 2.2 Detailed setup

thermal lensing compensation

polarization rotation and thermal birefringence compensation

6kW QCW
250ps
808nm
100Hz

N

up to 200mJ




2. Presentation of MOPA system - 2.2 Detailed setup

300 mm

450 mm ‘
A
L
S
g > %H
A —

up to 200mJ| | size of A3 paper : very compact




2. Presentation of MOPA system - 2.3 Experimental results and performance
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3 Spatial shape control

3.1 Principle of gain aperture
3.2 Modeling beam shape control
3.3 Experimental results



3. Spatial shape control - 3.7 Principle of gain aperture

Gain aperture is a double-pass end-pumped amplifier

higher order mode pumped (gain) volume

J

input beam yi pump beam

Gaussian mode
gain crystal

pumped (gain) volume

output beam pump beam

gain crystal

(
> end-pumping allows control
of spatial gain distribution

> gain shape is matched to TEM,, mode
size

> TEM,, is amplified and HOM are not

> output beam is cleaned

\_




3. Spatial shape control - 3.2 Modeling beam shape control

13

Radial pump distribution Radial input beam distribution

T F, shape, (r) 5= hv, — E. Shapeb(r) hv,
]P(r)zlsz J'J h ( ) d P_O- T F:'n(r)= F:n = FS=_
P T x’yS apep r\rar abs” f S 27Z'J‘0 Skapeb(r)r d}" em
dl ) (r,z)= o, I(r_,z) dz Absorbed pump intensity
7 1+n I(r,z) (including saturation)
q

o T : o -
g, (ri=mn —= l—exp[——”) Radial small-signal gain distribution

O-abs Tf

Radially dependent Frantz-Nodvik equations (double-pass)

-

[exp(F_in(r)) _ l]exp(F_m(r))GO(r)z \

J(r)=exp| g, (1)l
1+|:exp(Fm(r))—l]Go(r) - Gn=eela o]

a(r) =Ins1+

\ /




3. Spatial shape control - 3.3 Experimental results 14

’ Calculation , Experiments ~
3
2 10 1.0 @
é’; 09 - (\ 091 o}
g 08 I > 08 — oscillator
-2 0.7 ~ @ 07~ — G=23
_ 5 —G=3
3210123 °°F = 06 G=33
x/Wq « 05 ﬁ 0.5
2 S 04t § 04
03 - z
ot 0.2 - TEM 03
30 : 00
;_1 01 L 0.2
5 o L Lo 0.1
3 -3 2 -1 0 0
3241 /0 1 2 3 r/Wo K 2 N " Radiu(; (mm)1 i i
Effect of gain on beam profile Characterization
Increase of gain (pump energy) Huge improvement on brightness
triggers pulse rectification. M2 measurement on input and output beams
> IS'lde/IO > 0.01 - 0.03 > Mz = 3 > M2 = 1.3

> B =66 TW/sr/cmz
> energy increased up to 6 mJ sr/cm2

» B=512TW/



3. Spatial shape control - 3.4 Design criterion
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» this modeling does not allow M2 evaluation

» however, we can evaluate proximity of beam shape to Gaussian in far field

actual beam shape
after GA

Sout()

t

TEM,, beam shape
Soo(r)

Al ]

8, (1,0) = 5, (1,0)| r dr dO

=

00

”|S00(r,9)|rdr do

When s_ (r) =——5,,(r) we have Al/l,,—— 0




3. Spatial shape control - 3.4 Design criterion 16

[Evolution of Al/l,,as a function of small signal gain gyl (F;,/F¢ is a parameter) \

0.8
.’ > general trend : Al/l,, becomes
' smaller when small signal gain
0.6 increases
0.5
8 > however : Al/l,, tends to
e increase for high values of small
0.3 signal gain
v > this effect is smaller when the
0.1 F/F4=0.01 input fluence is small compared
0 . . S to saturation fluence

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
( )

The increase of Al/l,, is due to gain saturation causing beam distortion.
This effect is significant when F_,/Fs > 0.5

F..t/Fs < 0.5 can be recast as a condition on small signal gain and F./F,

out




3. Spatial shape control - 3.4 Design criterion
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4, Temporal shape control

4.1 First evidences of

temporal shape modification
4.2 Modeling of the effect
4.3 Experimental results



4. Temporal shape control - 4.1 First evidences of temporal shape modification 19

> 10Hz and 100Hz system have different behaviors in terms of pulse duration

Oscillator 430ps 400ps
Gain aperture 600ps 630ps
Main amplifier 700ps 470ps

> pulse duration depends on amplification stage : GA increases pulse duration

1.0 700
= = 3.0 mJ (no pump
0.9 — 40mJ
Q - — 50mJ 650
c 08r — 6.0mJ |
G - — 70mJ — 600
3 0.7+ 8
% g6k c 550
> O 2
5 05F £ 500 t, =47.4E, +293.89
N - = R2 = 0.99009
e 04 - Q 450 —
© ~ 0
— >
§ 03¢ % 400 |
Zz 02r 10
B 5
01~
-08 -04 O 04 08 12 16 20 2.5 3.5 4.5 5.5 6.5 7.5

Time (ns) Pulse energy (m))



4. Temporal shape control - 4.2 Modeling of the effect 20

¢ To capture this effect, we must model the amplification dynamics
laser rate equations

~N
numerical model equations (1D)

on inversion density D(z
—=-no_cf : 2
em

ot
a([) 8¢ photon density

Al

=gAz
Ig

—=no, chp—c ()
ot dz o Ag =—IgAz
\_ 0 YA | )
/ Experimental pulse shape is modeled by log-normal distribution ™\
(1 , )z > o and p control the asymmetry (tail)
nz- . . . .
f(2) = ——exp _—2“ > experimentally : T, (rize time) and t; (fall time)
O ZN2m 20 Pulse Shape
0.1 ——Experimentl data
s, 0=0.05, p=8.65, tr/tf=0.88
Saturation fluence of Nd:YAG 667 mJ/cm? Pumping power 6 kW . 0.08 _0 =024, p=7.14, wr/tf= 0.54
Flourescent life time of Nd:YAG 230 us Pumping pulse duration 250 us =] 3\ 0 =1.00, = 6.40, xr/xf = 0.09
Pumping energy 15) E 0.06
Rod length 126 mm z
Rod diameter 5mm Stokes efficiency 0.76 ‘2 0.04
Doping rate 1at% Quantum efficiencty at 1 at.% 0.8 -
Storage efficiency at 250 us pumping 0.66 0.02
Input beam energy 5m)J i
Input beam diameter 2.4 mm 0
0 1000 2000 3000 4000 5000
K time (ps)




4. Temporal shape control - 4.2 Modeling of the effect

21

Calculation results show a strong effect of input beam temporal shape

Input t,./1, = 0.98

/

~

> T./Tis close to 1

> pulse is stretched

100
- —Amplifier pulse
10 L —Initial pulse
= 726 ps
S (FWHM)
>
= 1 E
(7]
[ =
et
[
- 01
0.01 : :
0 1000 2000
Time (ps)

> leading edge of pulse grows slowly
> leading edge depletes the gain

3000

-

J

\_

Input t,./t; = 0.54

100 ¢

10;

Intensity (a.u.)

0.1 3

0.01

—Amplified pulse
—Initial pulse

> T./T.is < 1

1000 2000
Time (ps)

> |eading edge of pulse grows fast
> |eading edge does not deplete the gain
> gain goes to peak of the pulse
> pulse is compressed

3000

J




4. Temporal shape control - 4.3 Experimental results
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Experiments and calculation : results and discussion

- 1.4
\I:
E 1.2
|—|
9 1 ~
©
c 08 r ——0.45 Jpumping
% 06 F —1.5Jpumping
D * 4.5 Jpumping
6 04 O 200 mJMOPA (Before)
§ 0.2 o mdclassMOPA
' 200 mJMOPA (Improved)
0 |||||||||||||||||||||||||||
0 0.5 1 1.5

Rise time to fall time ratio

> experiments and calculation show
that compression rate depends on 1,/ T;

> it does not depends on initial pulse length
> compression is higher with higher pump

energy
- /

(a.

—Before

0 1000

2000
Time (ps)

3000

> pulse compression in 100Hz system
is due to different oscillator pulse shape

—Thiswork

4000

10Hz 100Hz
T,/1; oscillator 1.31 0.54
final pulse duration 470us 700us

\_




5. Conclusion 23

Compact MOPA system with gain aperture can amplify and shape the input beam.

Spatial shaping

~N

<~ Gain aperture device is efficient in supressing higher-order modes contributions.
. <~ Higher gain results in stronger reduction as long as the gain is not saturated.

1 Temporal shaping N

<~ Beam amplification can lead to both beam stretching and beam compression.

< Calculations and experiments show that beam leading edge slope is critical.
. J

- higher gain lower M2 - M2 nearly stable at 10Hz
- if Fout/Fs < 0.5 - M2 gets bigger at 100Hz

- Tr/1s < 0.86 —> compression
- Tr/Tr > 0.86 —> stretching
- effect is stronger if gain increases

- only stretching observed
- possibility of compression

Future work
4 )

<~ Preliminary calculation show that gain aperture can also produce compression.
< Combining gain aperture with volume Bragg Grating could allow further control on

shaping .
.

J
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Thank you for your attention




