

Tokushima University Hz spectroscopy of gases

(1) Rotational transitions of polar molecules

- ✓ Rich spectral fingerprints with high sensitivity
- ✓ High molecular selectivity based on rotational transition
- High molecular discrimination at low pressure due to narrow Doppler linewidth (~1MHz)

(2) Less scattering

- $\checkmark \lambda_{THz}$ >> particle diameter
- Possible to analyze gas molecules mixed with aerosols, fog, cloud, smoke, soot, etc

Tokushima University pLED Hz spectroscopy of gases

(1) Rotational transitions of polar molecules

- ✓ Rich spectral fingerprints with high sensitivity
- ✓ High molecular selectivity based on rotational transition
- ✓ High molecular discrimination at low pressure due to narrow Doppler linewidth (~1MHz)

(2) Less scattering

- ✓ λ_{THz} >> particle diameter
- Possible to analyze gas molecules mixed with aerosols, fog, cloud, smoke, soot, etc

Dual THz comb spectroscopy (THz-DCS)

How **dual** pulse lights with different f_{rep}

can be generated by a **single** fs laser?

slightly different between two wavelength lights

Gapless THz-DCS 3.

Tokushima University

- Adaptive sampling THz-DCS using a 4. single, free-running fiber laser
- Summary 5.

ANSWER

150

pLED

Time

