マイクロ固体フォトニクス研究会

2021年 10月 21日

分極反転による ミリ波・THz波無線信号処理技術

村田 博司

三重大学 大学院工学研究科 電気電子工学専攻

OWARD B5G

ICTの進化 - 昭和・平成・令和 -

5G Mobile Network

Enhanced mobile broadband

Massive machine type communications

✓ Massive connectivity:
~10 million/km²

Ultra-reliable and low latency communications

✓Latency: ~ 1ms

ネットワーク機器の市場規模

世界のマクロセル基地局市場規模の推移

(出典) IHS Technology

世界のスモールセル市場規模の推移

From 5G to Beyond 5G/6G

Beyond 5G 推進戦略ロードマップ(総務省)

No	研究開発課題	受託者	予算/年	期間	備考
001	Beyond 5G超大容量無線通信を支 える次世代エッジクラウドコン ピューティング基盤の研究開発	◎東京工業大学,岐阜大学,滋賀県立大学 富士通オプティカルコンポーネンツ(株) 古河電気工業(株),古河ネットワークソリューション(株) 日本電気(株),大阪大学,東北大学 楽天モバイル(株)	10億円	4年	
002	Beyond 5G超大容量無線通信を支 える空間多重光ネットワーク・ ノード技術の研究開発	◎香川大学, (株)KDDI総合研究所 日本電気(株)、サンテック(株) 古河電気工業(株)	8億円	4年	
003	テラヘルツ帯を用いたBeyond 5G 超高速大容量通信を実現する無線 通信技術の研究開発	◎富士通(株)、東京都市大学 ◎早稲田大学,日本電信電話(株) 宇宙航空研究開発機構,三菱電機(株)	9億円	4年	項目1 項目2,3
004	Beyond 5Gに向けたテラヘルツ帯 を活用した端末拡張型無線通信シ ステム実現のための研究開発	◎(株)KDDI総合研究所, 早稲田大学 千葉工業大学, 名古屋工業大学 (株)日立国際電気	12億円	4年	
005	Beyond 5G超大容量無線ネット ワークのための電波・光融合無線 通信システムの研究開発	◎三重大学, (株)日立国際電気 (株)京都セミコンダクター (株)KDDI総合研究所, 東洋電機(株)	8億円	4年	

Challenge in MWP Technology for 5G

✓ 4G $f_c \sim 1.5 \text{ GHz} \Leftrightarrow \lambda \sim 20 \text{ cm}$ Loss in coax cable @ 1.5 GHz 5D2V $\alpha \sim -0.4 \text{ dB/m}$

✓ A/D Conversion Technique Sampling frequency *f_s* ~32 Gsa/s (ADP7000)

√ 5G

 $f_c \sim 30 \text{ GHz} \Leftrightarrow \lambda \sim 1 \text{ cm}$

Loss in coax cable @ 30 GHz CM06 $\alpha \sim$ -2.5 dB/m

✓ New EOM/EO converter

Antenna-Coupled Electrode EO modulator

 $f_r \sim 30 \text{ GHz} \Rightarrow \text{field enhance} \sim 8000$

*f*_{*r*} ∼80 GHz, 90 GHz

Optical amplitude/phase modulator Polarization reversal technique

低遅延信号配信デバイスの開発

Conventional Dispersion Compensation Techniques

Commercial 40 Gb/s coherent transceiver^[1]

Digital Signal Processing (DSP)

- C Tunable dispersion compensation
- 🙂 Wide wavelength range
- 😕 High power consumption
- Limitation of high-speed operation

Dispersion Compensating Fiber (DCF)

- Constant dispersion compensation
- 😕 Narrow wavelength range
- 🙂 Low power consumption
- 🙂 Possible to operate high-speed
- K. Roberts, M. O'Sullivan, K.T. Wu, H. Sun, A. Awadalla, D.J. Krause, and C. Laperle, "Performance of dual-polarization qpsk for optical transport systems," Journal of lightwave technology, vol.27, no.16, pp.3546-3559, 2009.
- [2] L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L.V. Jorgensen, B. Edvold, B. Palsdottir, and D. Jakob-sen, "Dispersion-compensating bers," Journal of Light-wave Technology," vol.23, no.11, p.3566, 2005.

Pre-equalizing Electro-Optic (EO) Modulator

Key point :

E/O signal conversion + Pre-equalization

Properties

- **Wigh-speed operation** (~100 GHz)
- **Wide wavelength range (C-band/ L-band)**
- **C** Low power consumption

- **③** Fiber length for dispersion compensation (~80 km)
- **C** Tunable dispersion compensation

Dispersion of optical fiber

Transfer function of optical fiber $H(\omega) = \exp\{-j\beta(\omega)L\}$

Propagation constant (Taylor expansion)

$$\beta(\omega) = \beta_0(\omega) + (\omega - \omega_0)\beta_1 + \frac{1}{2}(\omega - \omega_0)^2\beta_2$$

Group velocity disperior

Transfer function of fiber dispersion effect

Principle of pre-equalization

Transfer function of fiber dispersion effect

$$H_{dis}(\omega) = \exp\left\{-j\frac{1}{2}\omega^2\beta_2 L\right\}$$

Transfer function for pre-equalization

Impulse response for pre-equalization

Laser

Single Mode Fiber

L (km)

 $R_{\rm x}$

Data

EO Modulator

Operational Principle

Impulse Response of Traveling-wave EO Modulator

Impulse Response of Traveling-wave Modulator

Design of polarization reversal patterns

Precise design of reversal patterns: $\Delta - \Sigma$ method

Polarization-Reversed Patterns for Equalization

Design Parameters				
Optical wavelength	1.55 μm			
Fiber length	80 km			
Dara transmission rate	40 Gb/s			
Dispersion value, D	16 ps/nm•km			
Group index of lightwave, n_g	2.193			
Electrode length	38.25 mm			
Minimum length of polarization- reversed region	50 µm			
Number of quantization leverls	9			

New polarization-reversed patterns compensating for electrode loss effect for equalization

Modulation Frequency Dependence

Transmission Simulation

Simulation

Device fabrication

Polarization-reversed patterns

Modulation electrode

Fabricated device

Experiment-1: low frequency operation

Experiment-2: Single-tone operation

Experiment: Standard MZM case

Experiment: Pre-equalizing EOM case

Conclusions

Pre-Equalizing EO Modulator Utilizing Polarization-Reversed Structures

✓ Pre-equalizing utilizing velocity-mismatch & polarization-reversed structures

- New scheme for counter-propagation between lightwave and electrical signal.
 - \Rightarrow Fiber length for the dispersion compensation (~80 km)
- Able to compensate for electrode loss effect

✓ Simulation

- Evaluation of equalizing characteristics by EYE diagrams & BER
 - \Rightarrow Good agreement with the designed characteristics

✓ Device fabrication

- Optical extinction ratio ~ 30 dB
- Transfer function measurement

✓ Next Step

- Design for THz wireless applications
- Tuning of fiber length for compensation
- Assembling & demonstration