

2021年 9月 22日

Beyond 5G/6G 無線へ向けた 信号変換・処理技術

村田博司

三重大学 大学院工学研究科 電気電子工学専攻

Outline

1. Introduction

✓ 5G/6G Wireless & Electronic Device

- ✓Importance of Microwave Photonics for 5G/6G
- 2. Antenna-Coupled-Electrode EO Modulator
 - ✓ Basic structure & operational principle
 - ✓Analysis & design for 5G-band
 - ✓Experiments
 - ✓ Data Transfer (PRBS/HD video)

✓ Antenna measurement

- ✓ Signal convolution using dispersion effect
- 3. ACE-EOM for W-band.
 - ✓Analysis & design
 - ✓Experiments
 - \checkmark IF conversion by photonic technique

4. Conclusion

ICTの進化 - 昭和・平成・令和 -

ワイヤレス技術の姿

ICT産業・技術は継続的に進化する

5	2	1970年代	1980年代	1990年代	2000年代	2010年代	2020年代	2030年代
外部環境	経済環境 産業構造		In the state	ニューエコノミー	途上国の成長	エコシステム		~
		垂直統合			水平分業(グローバルフォーカス)			1
ICT産業・打	支術	G	ANG OF FOUR	MS/Intel/Cisco/De	Google/App	ole/FB/Amazon	/	/
①コンテンツ サービス	・アプリ・			EC	SNS	ビッグデータ OTT	超臨場感伝送	1
②ICTサー	ビス			検索エンジン	クラウド	IoT/機械学習	深層学習	シンギュラリティ
3インフラ	有線通信 無線通信	音声通信		インターネット	ブロードバンド	SDN/NFV	NW運用·管理統合·自動化	
				2G デジタJ	3G	4G(LTE)	5G コグニティブ無線	6G 超高周波通信
	放送	アナログ放送		/	デジタル放送(HD)		4K•8K	
④端末	電話機	固定電話機			フィーチャフォン	スマートフォン	ウェアラブルフォン	ウェアラブル
	コンピュータ	メインフレーム	ETTY/WS	デスクトップPC	1-KPC	タブレット	ペーパーPC	IoTデバイス
			ダウンサイジング	ハード/ソフト分離	パーソナル化ノキ	E/CHINE/IOTIE	量子コ	ンピュータ
		OS		WEBブラウザ			UX/音声認識	BMI
	テレビ	CRIFUE			液晶テレビ		有機ELテレビ	壁紙/立体TV
⑤デバイス	FPD	ブラウン管			TFT液晶		OLED	Embedded D
	集積回路	バイポーラトランジ	マスタ	CMOS (MOSF	ET)	プリンタブル化	Beyon	d CMOS
		ムーアの法則(3年で4倍高集積化,トランジスタ当りコストは年率35%減)						
		高集積化/低消費電力化						
⑥材料	半導体	シリコン						

移動体通信システムの進化

5G Mobile Network

✓Peak Speed: > 10 Gb/s /ch

Enhanced mobile broadband

Massive machine type communications

✓ Massive connectivity:
 ~10 million/km²

Ultra-reliable and low latency communications

✓Latency: ~ 1ms

From 5G to Beyond 5G/6G

高速電子デバイスの動向

IEEE THE INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS: 2020

Challenge in MWP Technology for 5G

√ 5G

 $f_c \sim 1.5 \text{ GHz} \Leftrightarrow \lambda \sim 20 \text{ cm}$

Loss in coax cable @ 1.5 GHz **5D2V** $\alpha \sim$ -0.4 dB/m

 ✓ A/D Conversion Technique Sampling frequency
 f_s ~32 Gsa/s (ADP7000)

√4G

 $f_c \sim 30 \text{ GHz} \Leftrightarrow \lambda \sim 1 \text{ cm}$

Loss in coax cable @ 30 GHz CM06 $\alpha \sim$ -2.5 dB/m

✓ New EOM/EO sensor

Antenna-Coupled Electrode EO modulator

 $f_r \sim 30 \text{ GHz} \Rightarrow \text{field enhance} \sim 8000$

f_r **∼**80 GHz, 90 GHz

Optical phase modulator (no-opt bias) Optical IF conversion technique

Electromagnetic Field Measurement Using ACE-EOM

2. Antenna-Coupled-Electrode EO Modulator

- ✓ Basic Structure & Operational principle
- ✓ Analysis & Design for 5G-band
- ✓ Experiments
 - ✓ Data Transfer (~ 2.5 Gb/s PRBS Signal, HD Video Stream)
 - ✓ 5G Antenna Measurement
 - Signal Convolution

Antenna-Coupled-Electrode Electro-Optic Modulators

Advantage

- Direct MW/MMW => LW conversion
- No external power supply
- Stable operation (optical PM modulation)
- No re-emission of MW/MMW signals
 - Advanced functions (Directivity control, SSB mod. by Pol.-reversal)

0

 E_c

EO: $r_{ij} \Leftrightarrow -r_{ij}$

Antenna-Coupled-Electrode Electro-Optic Modulators

- ☆ Stacked substrate structure
- ☆ Critical coupling between two-antenna & electrode
 - ✓ Field enhancement of ~8,000 times
 - ✓ Elimination of unwanted substrate mode

Stacked Substrate Structure

Analysis of Antenna-Coupled Electrode for 5G

Surface electric field distribution under 28.7 GHz plane-wave irradiation

Tuning of f_m , Z_{in} & Q-params

Calculated Frequency Response

 E_0 : Amplitude of MMW electric field n_m : MMW signal effective index k_m : MW signal wave number λ : Light wavelength r_{33} : EO coefficient Γ : Overlapping integral n_g : Light group index $\emptyset = n_g k_m t$: Initial phase

Fabricated ACE EO-modulator

1-/2-/4-Element Array (Optical insertion loss ~ 6 dB)

Measured Spectrum & Frequency Dependence

Data Transfer Experiments

Data Transfer Experiment Results

ASK Signal (On/Off-Keying) (MMW 16 dBm, d = 100 mm)

HDMI Movie Transfer Using Antenna-Coupled Electrode EO Modulator

HDMI Movie Transfer Using Antenna-Coupled Electrode EO Modulator

Tx

Rx

Precise Antenna Measurement

Measured S_{21} Characteristics

Wireless signal convolution using ANT-EOM & fiber dispersion effect

✓ <u>光位相変調器(アンテナ電極変調器)</u> 複数の光波を無線信号で同時に変調可能

✓ 波長分散と受信端での遅延

光ファイバー中の伝搬速度が波長により若干異る

⇒ 遅延時間: $\Delta T = D L \Delta \lambda$

ファイバ長:L、波長差: $\Delta\lambda$ 、分散:D

無線信号の自己相関(たたみ込み)

Experimental set-up

Measured signals 1: single laser

Detected Signal

Back-to-Back 1 Gb/s PRBS

Measured signals 2: two lasers

波長差 Δλ= 5 nm 時間幅 Δt= 360 ps

Δλ= 10 nm Δt= 640 ps

Δλ= 15 nm Δt= 1000 ps

Measured results

3. ACE-EOM for W-band

- ✓ Design & Experiments
- \checkmark IF conversion by use of photonic technique

Security checking system for dense user environment

- ✓ Big event & public transportation
 ⇒ Security requirement
- ✓ Current security check system
 - ⇒ Static / long checking time
- ✓ Long cue for many people
 ⇒ Limited application only (Airport, etc.)
- ✓ Check during walking/moving
 ⇒ Brief check time, High throughput

Project for Sensing/Imaging Using W-band MMW

Antenna-Coupled-Electrode EO Modulator/Sensor for W-band

Cross Sectional View

Advantage

- Direct MMW => LW conversion
- No external power supply
- Synthesis of MMW signals by photonics
- Suitable for imager calibration

Effect of Low-k Substrate in W-band

			$\boldsymbol{\mathcal{E}}_{r}$	tan ð	
	LiN	bO_3	(43, 43, 2)	8) ~0.001	
	${ m SiO}_2$ (Glass	4.0	0.0007	
	Florine-ba	sed Resin	2.28	0.0008	
	$\varepsilon_{\mathrm{reff}} = rac{h_{\mathrm{L}}}{rac{h_{\mathrm{L}}}{arepsilon_{\mathrm{rL}}}}$	$\frac{+ h_{\rm LN}}{+ \frac{h_{\rm LN}}{\varepsilon_{\rm rLN}}}$	$h_{\rm LN}$ $tighthin{blue}{c} & \varepsilon_{\rm rLN} \\ h_{\rm L} & \varepsilon_{\rm rL} \\ \end{array}$	LiN Low-k subs	ibO3
Patch a	antenna for 800	GHz operatio	<u>on</u>		
SiC)2 (<i>t</i> =250μm)	Florine-based (<i>t</i> =250µm	Resin)	Florine-based Resi (<i>t</i> =100µm)	n
	~ 300μm				′540μm

Design for W-band EO sensor

under 79 GHz MMW irradiation

Fabricated Device for W-band

Experiment for W-band signal conversion

W-band signal IF Conversion using photonic technique

W-band signal IF Conversion using photonic technique

 Measured optical spectrum at (A) (Just before OBPF)

Measured optical spectrum at (B) (After OBPF)

W-band FMCW signal conversion experiment

MultiView	Spectrum		SCPI		and the second second	Marker
Ref Level -29.0	0 dBm	RBW 3 MHz				* Marker 1
2 Frequency Sv 7 -29.00	veep 10 dBm	NCA MI[1]	N • 1Pk Cirw 1 Spe -63.13 dBm	ectrogram NCAN •1Pk	Cirw Differentiam -60dBm -46	Morker 2
-35 dBm		#0	18.00690 GHz			Marker 3
-45 dBm						Marker 4
-SO dBm						I Select Marker (M1)
-SS dBm						Mkr Type Norm Delta
with the	All and the second second	olligipations and a second	atyta ju sta ju			Marker To Trace
-70 dBm						Markers
		ک حدار تکار ک				1 Config

Conclusions

Antenna-coupled electrode EOM for 5G/Beyond 5G/6G

✓ Critical coupling between antenna & electrode

- ✓ Field enhancement factor > 8,000
- \checkmark Negligible re-emission of fields
- ✓ Experimental demonstration

✓ Bandwidth ~ 2 GHz

- ✓ Data transfer ASK ~2.5 Gb/s \Rightarrow > 10 Gb/s with QAM
- ✓ Precise antenna measurement systems
 - ✓ Commercially available (From 2021 summer)
- ✓Wireless signal convolution
 - ✓ Correlation of wireless data signal
- ✓ W-band operation
 - ✓ Photonic IF conversion

Future Works

- ✓ 5G systems /Beyond 5G mobile tranceiver
- ✓ Antenna precise measurement
- ✓ W-band wireless comm./radar system

Acknowledgement

Great thanks to my colleagues for valuable comment & support :

AIST	Dr. S. Kurokawa, Ms. S. Matsukawa
SEIKO GIKEN	Dr. Y. Toba, Dr. M. Sato, Dr. M. Onizawa
ENRI, MPAT	Dr. N. Yonemoto
Alouette Technology	Dr. H. Nomi, and Dr. A. Nomi
Mie University	Mr. H. Yokohashi, Mr. S. Kodama

This work was partially supported by the SCOPE program, the project entitled "Research and development of radar fundamental technology for advanced recognition of moving objects for security enhancement" (JPJ000254) from the Ministry of Internal Affairs and Communications (MIC), and the project entitled "THz and optical wireless aggregation research & development for B5G (Toward-B5G) from NICT, Japan.

