

壁面剥離などの診断

安心安全/文化財保護 非破壊・非接触での内部状態検査

首都高速八重洲線トンネルタイル剥離 (首都高速道路公団Web)

東日本大震災後の東北大学工学部 (スペクトルデザイン社)

・震災等による壁面剥離状況
・橋梁コンクリート内部欠陥
・コンクリート内部鉄骨状態
・古墳壁面剥離状況

テラヘルツ波による断層像計測例

Reflected wave form from the wooden wall

t₅-t₆ 28mm t_e-t₇ 34mm

45mm wide beam

Configuration of wood frame

Time

碇智文, 福永香; 検査技術,18 (2013) P.23. 永妻忠夫, 福永香;光技術コンタクト, 54 (2016) P.41.

テラヘルツ波による断層像計測の問題点

テラヘルツ波による断層像計測の問題点

あらかじめ測定点に合わせて 装置の測定位置を設定する必要

光領域の技術:FSFレーザー

光領域の技術:FSFレーザー

<u>FSFレーザーの発振スペクトルと瞬時周波数のイメージ(Moving Comb Model)</u>

・FSFレーザーを使用した光距離計測 ・東北大学ベンチャー企業(H22年~) ⇒FSFレーザー開発 ⇒距離計測装置

茶千葉工業大学 11

FSFレーザーによる距離計測例

FSFレーザーによる エンジンブロックの距離計測例

広いワークエリアが要求される 大型・複雑な形状も一括計測が可能

3Dイノベーション社様 ご提供

孟千葉工業大学 12

周波数シフトテラヘルツ波の発生

-1.5

-2.5

バイアス電圧

斋千葉工業大学 16

[V]

-1.0

周波数シフトテラヘルツ波の発生

11-15 V, <100 mA

プリアンプ駆動電圧

ビート周波数の観測

λ_1 (ECLD)=1556.28nm
λ_2 (FSFL)=1558.26nm±0.5nm
v_{THz} =244.8GHz±60GHz
λ_{THz} =1.225mm(0.98mm~1.62mm)
周波数シフト特性:14.6kHz/mm
樹脂部と空気部の光路差 : L_d *(n _p -1) > $n_p = \frac{L_T}{L_d} + 1$

material	Frequency	Path difference	Thickness	Index of Refractive
PTFE	127.5kHz	8.73 mm	20 mm	1.437
PTFE	191.3kHz	13.1 mm	30 mm	1.437
PE	236.7kHz	16.2 mm	30 mm	1.540

FSテラヘルツ波による距離計測

FSテラヘルツ波による距離計測

光路差に応じたビート周波数を確認

 $\begin{array}{l} \lambda_1 (\text{ECLD}) = 1556.28 \text{nm} \\ \lambda_2 (\text{FSFL}) = 1558.26 \text{nm} \pm 0.5 \text{nm} \\ \nu_{\text{THz}} = 244.8 \text{GHz} \pm 60 \text{GHz} \\ \lambda_{\text{THz}} = 1.225 \text{mm} (0.98 \text{mm}^{-1}.62 \text{mm}) \end{array}$

difference	Calculated	Experiment
10mm	146.0kHz	147.8kHz
12mm	175.2kHz	173.9kHz
14mm	204.4kHz	204.3kHz
16mm	233.6kHz	230.4kHz
18mm	262.8kHz	260.9kHz
20mm	292.0kHz	291.3kHz

FSテラヘルツ波による距離計測

Experimental setup for Detection of a FS-THz wave

茶千葉工業大学 23

FSテラヘルツ波による距離計測

ビート信号SN比の改善

ビート信号SN比の改善

Experimental setup for Detection of FS-THz wave

THzアンプ(MMIC)

周囲環境雑音

RFスペアナにBNCケーブルを接続しただけの状態で スペクトル測定

ビート信号SN比の改善

SBDおよび電流アンプ

		波状アンテナ	
		140 ~ 220 [GHz]	
· · · · · · · · · · · · · · · · · · ·	Maximum RF Input Power	Recommended / Damage	0 dBm / 5 dBm
10 " C	Typical	ZBD	2400 [V/W]
	Responsivity	ZBD-F	2300 [V/W]
	Typical NEP	ZBD	11.0 [pW/ $\sqrt{\text{Hz}}$]
rainia Diadaa 制 7DD	Typical NEP		

Virginia Diodes 製 ZBD

m RF ower	Recommended / Damage	0 dBm / 5 dBm
al	ZBD	2400 [V/W]
ivity	ZBD-F	2300 [V/W]
	ZBD	11.0 [pW/√ Hz]
NEP	ZBD-F	1.1 [pW/√ Hz]

ビート信号SN比の改善

長距離測定

ビート信号SNおよび計測時間の改善

現状の大きな問題

DEFINITION OF THE OUTPOINT OF TH

E(t) R

Fig. 2. Sketch of the passive cavity model (PCM).

茶千葉工業大学 38

Guilletモデルの拡張

FSFレーザーの動作原理

結論·展望

スペクトルデザイン社 深澤亮一様,碇智文様

3Dイノベーション社 伊藤弘昌 先生, 原武文 様

千葉工業大学 M2 本條実, M1 野村悠介 OB 小石川将晃, 南部広樹, 栗原貴大, 山口雅輝

STEM関係者各位

コンソ研究会 株式会社熊谷組,大和ハウス工業株式会社,積水化学工業(株), 株式会社ジャスト,積水ハウス株式会社,住友林業(株), ミサワホーム株式会社,(株)長谷エコーポレーション

【和文】本研究はJSPS 科研費 JP18H03827 の助成を受けたものです。