接合界面強靱化PowerChipの開発

Arvydas Kausas

「ジャイアント・マイクロフォトニクスによる高出力極限固体レーザ」プロジェクトセミナー 2021/08/11

Outline

- Motivation
- New concept and methods
 - Distributed Face Cooling (DFC)
 - Surface Activated Bonding (SAB)
- Tensile strength measurement
- FEA modeling
- Bonding for KEK

21-crystal DFC chip made of bonded Nd³⁺:YAG/Sapphire crystals

Our motivation

JST-Mirai project for laser-driven particle acceleration

- 10 J, 100 Hz operation at 1064 nm Common crystals and methods
- Room temperature operation
 Reduce need for expensive cooling system
- Compact design to fit a breadboard
 Reduce overall size of the system
- QPM-quartz crystal for frequency conversion
 High LIDT value

Composite microlaser

2021/08/11

Power scalability

A3 paper size amplifier system

Power scalability for various laser configurations

2021/08/11

Gain evaluation for 2J, 100Hz system

Single-pass gain

Double-pass gain

Parameters used in estimations

Absorption coeff, α	1.5 cm ⁻¹
Emission cross-section, σ_{em}	2.8 x 10 ⁻¹⁹ cm ²
Fluorescence lifetime, τ_p	250 μs
Crystal length	10 mm
Pump wavelength, λ_{ρ}	885 nm
Pump peak power	4 x 8 kW
Pump size	1 cm ²
Pump pulse duration	250 μs
Saturation fluence, F_{sat}	2.55 J/cm ²
Small-signal gain, <i>g₀l</i>	3.14
Absorption eff, η_{abs}	0.78
Radiation quantum eff, η_q	0.78
Storage eff, η_{st}	0.632
Storage energy, <i>E</i> _{st}	2.55 J

2021/08/11

Experimental setup

- Pre-amplifier is unstable if repetition rate changes due to thermal lens
- Residual pump power could damage the LD diodes

2021/08/11

Surface Activated Bonding (SAB)

b) T. Suga et. al, Acta Metall.Mater. 40, S133-S137 (1992).
c) L. Zheng et. al, Optical Materials Express, 7(9), 3214 (2017).

Bonding system

Composite chip, Sapphire/Nd³⁺:YAG/Cr⁴⁺:YAG/Sapphire

2021/08/11

Fast Atom Bombardment activation source

2021/08/11

TEM and EDX measurements. Reference crystal

Arvydas Kausas, Zheng Lihe, Takunori Taira, Japanese applied physics conference, 14p-A201-2 (Spring, 2020)

2021/08/11

Coated material bonding

TEM analysis of SAB boundary: Coated samples

2021/08/11

TEM and EDX measurements. Annealed crystal (1100°C)

Arvydas Kausas, Zheng Lihe, Takunori Taira, Japanese applied physics conference, 14p-A201-2 (Spring, 2020)

2021/08/11

Linear thermal expansion

 $\Delta L = \alpha L \Delta T$

YAG crystal:	6.13 x 10 ⁻⁶ 1/K
Sapphire (IIc):	5.3 x 10 ⁻⁶ 1/K
Sapphire (⊥c):	4.5 x 10 ⁻⁶ 1/K

Example of ø1" bonded crystals

YAG/Sapphire bonding

bonding

Tensile strength measurement

- Device preparation
- First measurements with the various adhesive
- New holder setup
- Crystal preparation
- Crystal annealing
- Tensile strength measurement
- Additional water drop test

2021/08/11

Initial setup

2021/08/11

Test adhesive for bonding test

- Aluminum plate samples glued to a glass sample were prepared to test the strength of adhesive, which could potentially be used for real bonding tensile strength measurement.
- Tensile strength of each adhesive was evaluated

	/
#1-1	(
3M2216	3
	F
	k
A Real Property of the second	
Sample after the test	

Adhesive	Sample Nr 1, MPa	Sample Nr 2, MPa
アラルダイト (2019/07/19)	5.37	-
3M 2216 (2019/07/25)	6.97	6.84
Permabond ET500 + primer 2K (2019/10/03)	1.15	-

2021/08/11

New tool by Kondo san, 2019/11/20

2021/08/11

Crystal preparation. Bonding 2020/02/10 – 02/12

FAB machine. Gen 2. room 104

Sample N	FAB time	Load_1, N	Time_1, min	Load_2, N	Time_2, min
Nr. 1	8 min	202	20	301	23
Nr. 2	8 min	202	900	316	360
Ion source machine, LAN, room 302					
Sample N	Activation scan	Load, N	Time, min		
Nr. 3	5 scan	500	5	_	
Nr. 4	5 scan	500	5	Sapphire, c-cut	
the set of				Nd:YA ø8mr	.0x3 mm .G, <100>, n x4 mm
Implify Sapphire, c-cut 10 20 30 40 50 50 90 100					nire, c-cut .0x3 mm

Load_X – bonding force applied for 1st or 2nd bonding procedure

Time_X – time spent under applied force for 1st or 2nd bonding procedure

2021/08/11

Crystal preparation. Temperature annealing 2020/02/13

Samples	Nr 2 an	d Nr 4 are	placed	inside	muffle	furnace

1	From Room T to 500 °C	10 h
2	500 °C constant	24 h
3	From 500 °C to RT	8 h

2021/08/11

Tensile strength results

Sample Nr	Condition	Tensile strength, MPa
1	FAB, ref	1.170
2	FAB, 500°C	1.365
3	lon, ref	1.951
4	lon, 500°C	5.852

Electrical discharge is visible for sample Nr 1 and Nr 3 (not annealed samples)

2021/08/11

Water drop test

Test could show the surface preparation by applying one drop to a surface of a crystal, if surface is rough the drop will have high angle because of the surface tension forces

The surface after debonding is not rough

Future work

Fujioka, K et al. "Room-temperature bonding with post-heat treatment for composite Yb:YAG ceramic lasers. *Optical Materials*, *91*, pp. 344–348 (2019)

Autograph AGX-V (Shimazu)

Conclusions

- 4 samples were prepared for tensile stress measurement.
- Bonding strength varied from 1.2 MPa to 5.8 MPa, depending on the sample preparation condition.
- Highest bonding strength was achieved in the sample which was made by ion source and later annealed at 500°C.
- Reference samples produced electrical discharge during crystal separation.

2021/08/11

Comsol Multiphysics simulations

- FEA model
- Evaluation of beam propagation
- Power distribution in DFC chip
- Temperature distribution
- Phase shift evaluation
- Thermal lens model

Finite element analysis calculation

Pump beam profile:

- Square Top-Hat profile
- Beam waist is constant along the crystal, 2w = 10 or 15 mm

Absorption coefficient in Nd³⁺:YAG crystal:

- Absorption coefficient is constant and does not depend on a temperature
- No pump saturation occur* ($I_{pump} \ll I_{saturation,pump}$)

Fractional heat load:

• η_h equal to 0.318 (for 885 nm pump)

$$Q(x, y, z) = \frac{P_{in} \cdot \eta_h \cdot abs(x < w, y < w) \cdot \alpha(z)}{w^2} \cdot e^{-\int_0^l \alpha(z) \cdot dz}$$

Y. Sato et al. in IEEE JQE, vol. 40, pp. 270-280 (2004)

2021/08/11

ジャイアント・マイクロフォトニクスによる高出力極限固体レーザ

degC

Comsol Multiphysics

Quarter size FEA simulation

Thermal effects

FEA simulation for Rod and DFC chip

2021/08/11

Power distribution inside chip

2021/08/11

Temperature distribution

2021/08/11

Optical Path Difference (phase shift) in end-pumped rod crystal

The **relative path difference** (or **phase shift**) traveled between two rays that pass through different mediums from the same object point.

OPD of an ideal lens (parabolic)

$$OPD(r) - OPD(0) = -\frac{r^2}{2f}$$

Thermally induced OPD

$$dOPD(r,z) = \begin{bmatrix} \frac{\partial n}{\partial T} + (n-1)(1+v)\alpha_T + 2C_r n^3 \alpha_T \end{bmatrix} \Delta T(r,z) dz$$

Refractive index End-faces bulging End-faces birefringence

Temperature change

 $\Delta T(r,z) = [T(r,z) - T(0,z)]$

- r radial direction
- α_T thermal expansion coeff
- $\frac{\partial n}{\partial T}$ refr. Index change with temperature
- n material refractive index
- v Poisson's ratio
- C_r photo-elastic coeff

S. Fan et al, Opt. Comm., 266, p620 (2006)

2021/08/11

Optical Path Difference (phase shift) in end-pumped rod crystal

- 1. Calculate 2D surface temperature
- 2. Calculate temperature difference by *at2(0, y, z, T)- at2(0, 0, z, T)* function

Temperature difference: Temp at radial position of a rod – temperature at the rod center

Phase difference evaluation for the DFC chip

2021/08/11

Future work

1. Full simulation for amplifier case

2. New model for thermal lens and stress induced birefringence

3. Water flow simulation

Temperature distribution

Water flow distribution

2021/08/11

Bonding for KEK

2021/08/11

DFC chips for KEK experiment

DFC #11, 32-crystal

2021/08/11