Pulse duration tunable and high-brightness unstable cavity microchip laser

Hwan Hong LIM

Division of Research Innovation and Collaboration Institute for Molecular Science (IMS)

lim-hwanhong@ims.ac.jp

Outline

1. Introduction

- 2. Pulse duration tunable MCL
- 3. High brightness unstable cavity MCL
- 4. Summary

Introduction

Compact

► Stable

- ► Short pulse (< 1 ns) \rightarrow >MW peak power
- ► Single axial frequency

Laser diode

Beam pattern degradation

- [1] J. Dong, et al., Opt. Express **15**, 14516 (2007).
- [2] A. Agnesi, et al., Appl. Phys. Lett. 89, 101120 (2006).
- [3] H. Sakai, et al., Opt. Express 16, 19891 (2008).
- [4] N. Pavel, et al., Opt. Express **19**, 9378 (2011).
- [5] H. H. Lim and T. Taira, Opt. Express **25**, 6302 (2017).
- [6] L. Zheng, et al., Opt. Express 27, 30217 (2019).
- [7] H. H. Lim and T. Taira, Opt. Express 27, 31307 (2019).
- [8] X. Guo, et al., Opt. Express 27, 45-54 (2019).

Pulse duration tunable laser

Q-switched pulse duration \propto cavity length

$$\tau_p \approx \frac{r\eta(r)}{r-1-\ln r}\tau_c$$

 $\tau_{\rm c}$: the cavity lifetime r: the initial inversion ratio η : the energy extraction efficiency

Cavity length dependent characteristics

Nd:YAG/Cr:YAG ceramic

10

Pulse width tunable MOPA

Application examples

マイクロ固体フォトニクス研究会 / 2020.7.8 第9回 レーザー学会「ユビキタス・パワーレーザー」専門委員会

High brightness unstable cavity MCL

分子科学研究所 Institute for Molecular Science

Experimental setup

- 700 W pump diode @ 808 nm, 10 Hz during <400 μs</p>
- Monolithic ceramic with a dimension of 6 X 6 X 7(*l*) mm³
- 1.1 at.% Nd³⁺ doping and 30% of initial transmittance of Cr⁴⁺:YAG
- Flat back cavity mirror M_b

- ► A half inch plano-convex lens LM_0 with a radius of curvature of 52 mm (for *m* of $\sqrt{2}$ for the confocal cavity)
- Output coupler (OC) $M_{0'}$ HR coated on the center part of LM_0 in a spot diameter of 2 mm
- Collimation lens L with a focal length of 50~150 mm in case of the lens position
- Comparison of laser performance for brightness scaling
- Replacement of the curved OC, M_0 with a flat mirror
- Identical all other conditions (pumping, cooling, and so on) for both resonators
- A flat mirror with a reflectance of 50% (the same roundtrip loss for an ideal confocal cavity with *m* of $\sqrt{2}$)

Laser characteristics

- Doughnut beam pattern with a center Poisson spot
- Pulse energy of 13.2 mJ @ 10 Hz
- Pulse width of 476 ps

- Short term RMS stability <1%</p>
- Linear polarization @ 10 Hz

(may be pump power induced birefringence and depolarization due to stress and heat)

Laser characteristics

Laser characteristics

Intensity distribution of plane wave focused by an annular aperture at the focal plane

$$I(r,f) = \frac{4 I(0,f)}{(1-1/m^2)^2} \left[\frac{J_1(kr \, b/f)}{kr \, b/f} - \frac{1}{m^2} \frac{J_1(kr \, a/f)}{kr \, a/f} \right]^2, \quad (1)$$

where m = b/a is the ratio of the outer radius b and the inner radius a of the aperture, $S = \pi a^2 (m^2 - 1)$ is the annular area, J_1 is the first-order Bessel function, $k = 2\pi/\lambda$ is the wave number, f is the focal length, and $I(0, f) = S^2/(\lambda^2 f^2)$ is the peak intensity at the focal plane. [1] B. Lu, et al., J. Mod. Opt. 48, 1171 (2001).

Z_{R,eff} (Red line)

 $Z_{R,G(M^2=1)}$

(Blue line)

Comparison with flat-flat cavity

- The energies of 8.8, 11.5, and 13.2 mJ for unstable cavity are paired with 10.2, 14.3, and 18 mJ for flatflat cavity by every pump condition, respectively.
- No degradation of pulse width and M² due to the uniform doughnut pattern for energy scaling.

Comparison with other works

J. Dong, et al., Opt. Express **15**, 14516 (2007).
 A. Agnesi, et al., App. Phys. Lett. **89**, 101120 (2006).
 H. Sakai, et al., Opt. Express **16**, 19891 (2008).
 N. Pavel, et al., Opt. Express **19**, 9378 (2011).
 H. H. Lim and T. Taira, Opt. Express **25**, 6302 (2017).
 L. Zheng, et al., Opt. Express **27**, 30217 (2019).
 H. H. Lim and T. Taira, Opt. Express **27**, 31307 (2019).
 X. Guo, et al., Opt. Express **27**, 45-54 (2019).

- $\blacktriangleright E_{eff} = 30\%$
- ► $M_{eff}^2 = 1.2$

► Highest effective brightness of over 0.5 PW/(sr·cm⁻²)

Laser induced breakdown (LIB) in air

6 Threshold energy E_{th} [mJ] Θ Doughnut Θ 5 Near Gaussian 4 æ 3 œ 0 2 1 0 10 20 30 40 50 60 70 0 Focal length f [mm]

[1] H. H. Lim and T. Taira, Opt. Express 25, 6320 (2017).
[2] H. H. Lim and T. Taira, Opt. Express 27, 31307 (2019).

マイクロ固体フォトニクス研究会 / 2020.7.8 第9回 レーザー学会「ユビキタス・パワーレーザー」専門委員会

Application examples

マイクロ固体フォトニクス研究会 / 2020.7.8 第9回 レーザー学会「ユビキタス・パワーレーザー」専門委員会

Summary

► Pulse duration tunable laser: 0.5-9 ns, ~1 MW

► High brightness doughnut laser: 0.5 sr⁻¹ cm⁻², 28 MW, 13.2 mJ

マイクロ固体フォトニクス研究会 / 2020.7.8 第9回 レーザー学会「ユビキタス・パワーレーザー」専門委員会

Future works

- Brightness scaling up
- ► Higher repetition rate

► Frequency conversion by NLO

Acknowledgement

Support: TILA Tiny Integrated Laser

Impulsing Paradigm Change through Disruptive Technologies Program

New Energy and Industrial Technology Development Organization

