Powerchip による THz-DLAの基礎研究

KEK: 吉田 光宏, 張 叡, 周 翔羽, 本田 洋介 分子研/理研: 平等 拓載, Arydas Kausas, Vincent Yahia, 石月 秀貴

XFELでのテラヘルツ加速への期待

- THz-Deflector によるバンチ長/構造の観測
- ・バンチ圧縮によるFELゲインの向上
- ・アト秒バンチ生成
- 超小型XFEL

DWA

さらに円偏波にすれば

THz 加速器の利用

・THz誘電体加速器(ラジアル偏光)による バンチ圧縮 → 尖頭電流向上/アト秒電子生成(10mJ) → 将来の小型(1/10)高繰り返し XFEL (~300 MV/m)

MgO:PPLN(IMS製)による高強度THz生成

THz-Deflector

SACLA 1.5 ?

- 高輝度化 (IrCeカソード)
- THz 圧縮ユニット

THz-DWA による線形加速器ユニット

THz-DWA ユニットの実証

超高電界加速の方式

加速器の電界を大幅に上げるには

- 耐圧の高い媒質 $W(蓄積エネルギー) = \int \frac{\varepsilon E^2 + \mu H^2}{2} dV$ ×金属 $E = \sqrt{\frac{2W}{\varepsilon V}} \sim f\sqrt{W}$ E: 電界、H: 磁界 ◎プラズマ V:体積 〇誘電体
- 体積を小さくする or 蓄積エネルギーを上げる $Q = \frac{\omega W}{P_{\rm exact}}$

周波数の高い加速器:THz

- 従来のGHz帯加速方式
 - → 20GHz以上の高周波源が無い
- 周波数重畳
- 100 fs 程度の超短パルスと

・レーザー駆動

・陽子ビーム駆動

- プラズマ or 誘電体による変換
 - レーザー高強度化は著しく速い
 - ・電子ビーム駆動 SLAC/KEK等で可能&世界最高電圧の実績
 - CERN/J-PARC等で可能→バンチ圧縮が問題

- 常伝導Cu: Q~10,000 - 超伝導Nb: Q~10¹⁰ しかし電界<40MV/m

f: 周波数

- 誘電体 : Q~10⁶

Q値の高い材料

エネルギー源と電界

	常伝導	超伝導	電子ビーム 駆動	レーザー 駆動	陽子ビーム駆動
	6/12GHz	1.3GHz	5THz (50fs)	5THz (50fs)	? THz (後述)
駆動 エネルギー	20J [/m] = 40MW × 500ns	200J [/m] = 300kW × 700μs	70J (SLAC) =23GeV × 3nC 35J (KEK) =7GeV × 5nC	<u>40J (→ 1kJ)</u>	15kJ (SPS) = 450GeV × 30nC 150kJ (LHC) = 7TeV × 20nC <u>300kJ (J-PARC MR)</u> = 40GeV × 8μC
電界	40/80MV/m 放電限界	40MV/m クエンチ	20GV/m × 2m = 40 GV	10 GV/m	?
繰り返し	50Hz	5Hz	50Hz	10Hz	1/18 Hz (SPS) 0.3 Hz (J-PARC MR)
ビーム電力 /駆動/AC	400W / 1 kW / 8 kW (1m辺り)	10 MW / 23 MW / 150 MW (ILC)	? / 3.5 kW / 70 kW	4 W ? /400W /4kW(LD)	? / 833W/75MW (SPS) / <u>300kW/25MW</u> (J-PARC)
効率	5% ?	8%	5%(電子生成) ×η(e→e)	現状 0.1 % → 10 %?	1%(陽子ビーム生成) × ŋ(p→e)

THz accelerator

THz加速の有効性

- THz の誘電体加速 12 GV/m が World Record 実用上は <u>1 GV/m</u> 程度が利用しやすい (加速器の全長が 1/30 になるので十分高い電界)
- ・装置が簡単 (ガラスの筒しかない)
- ・ プラズマ加速と比べて追加速に利用し易い
 超高真空に対応 / 収束力の問題が無い / 散乱無
- THz 加速器の KEK/分子研/理研での実証試験
- ビーム駆動による
 追加速の実証実験

分子研・理研との協力による 高強度THz源開発

加速効率: Accelerator pulsed operation

• RF accelerator operates burst micro bunch

誘電体加速/THz-DLW

THz- Dielectric Lines Waveguide <u>※ただのガラス管です</u>

Dielectric Laser Acceleration (DLA) :

グレーティング構造に電磁波を照射して 表面を走行する電子を加速する方式 1μm帯:東大(上坂研)との共同開発(科研費) THz帯:分子研(平等研)・理研(南出研)との共同開発

<u>Dielectric Lined Circular Waveguide (DLW)</u>: キャピラリー中のTHzで加速

<u>ビーム駆動</u>: 超短パルス電子ビームを通す際に生じる 超高電界のTHz航跡場で後続のビームを加速(東大との協定) レーザー駆動: THz-PPLN で生成した高強度 THz

産業技術総合研究所で実験 → 現在KEK/分子研・理研(平等研)

Dielectric Wall Accelerator (DWA)

光伝導スイッチ(PCSS)を用いて誘電体伝送路 を高速にスイッチして加速電界を得る 東芝との共同研究中

Dielectric Assisted Accelerator (DAA) 誘電体装荷型加速管 高いQ値 (10⁵@室温・10⁸ @ 80K) 6 GHz /12 GHz:科研費・三菱重工/基本特許取得

Breakdown Limits on Gigavolt-per-Meter Electron-Beam-Driven Wakefields in Dielectric Structures

M. C. Thompson,^{1,2,*} H. Badakov,¹ A. M. Cook,¹ J. B. Rosenzweig,¹ R. Tikhoplav,¹ G. Travish,¹ I. Blumenfeld,³ M. J. Hogan,³ R. Ischebeck,³ N. Kirby,³ R. Siemann,³ D. Walz,³ P. Muggli,⁴ A. Scott,⁵ and R. B. Yoder⁶

$$13.8\pm0.7$$
 GV/m.

Fused silica, THz range, ~psec exposure

Mode wavelengths

$$\lambda_n \approx \frac{4(b-a)}{n}\sqrt{\varepsilon - 1} = 0.7 \, mm$$

Peak decelerating field

a = 0.1mm

 $b=0.324\,mm$

 $\varepsilon=3.0(SiO_2)$

q = 5 nC

$$\sigma_z = 30 \mu m (0.1 ps)$$

$$eE_{z,dec} \approx \frac{-4N_b r_e m_e c^2}{a \left[\sqrt{\frac{8\pi}{\varepsilon - 1}} \varepsilon \sigma_z + a \right]} = 2 \, GV \,/ \, m(\sigma_t = 0.1 \, ps)$$

Transformer ratio

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

THz帯DLA 用 Si 回折格子

THz 光の加速器の利点:

- 0.1 mm 程度の加速構造
 - ・加速領域の体積が赤外のおよそ 100³倍・加速構造の機械加工が可
- 光(赤外)に近い高い加速勾配(絶縁破壊) ・200 MV/m

THz OI-DLA のための Si 回折格子の加工

Pitch	0.320	$\mathbf{m}\mathbf{m}$
Depth	0.210	mm
Number of Pitches	10	
Material of Wafer	Si	
Thickness of Wafer	0.380	mm
Index of Si @ ~THz	3.4	

THz帯周波数重畳 = モードロック加速管

ビーム駆動THz加速

まずは超高電界のTHz加速の実証のため

SC_R0_6A ターゲット交換

交換前

SUS筒にセラミックチューブを付けていた。

銅筒に石英管を取り付けるように変更。

ビームラインに復元済み。

• R56=-0.17m → 145MV/1.5GV 必要

圧縮無

Millimeter-wave detector

WR-22 (40-66 GHz) 検波器を設置
 50GHz = 6ps → 2ps 程度のバンチ長に相当

B6 +90deg

ミリ波検出器

→ 今後遅延ラインを導入して マルチバンチ減速 → 後続のバンチを加速

DWAの加速パラメーター(Simulation)

レーザー駆動THz加速

小型化 アト秒発生

DFG

Frequency(GHz)	$\Delta \lambda$ (nm)	ŋ (%)
100	0.354666667	0.033333333
200	0.709333333	0.066666667
300	1.064	0.1
400	1.418666667	0.133333333
500	1.773333333	0.166666667

THz generation (カスケーディング) **DESY** method THz-Wave Generation via Cascaded Optical Parametric Amplification

M. Hemmer¹, G. Cirmi^{1,2}, F. Reichert³, K. Ravi^{1,4}, F. Ahr^{1,3}, H. Çankaya^{1,2}, N. H. Matlis¹, O. D. Mücke^{1,2}, L. E. Zapata¹, and F. X. Kärtner^{1,2,3,4}

¹Center for Free-Electron Laser Science, DESY, Hamburg, Germany

² The Hamburg Center for Ultrafast Imaging, Hamburg, Germany

³ Physics Department, University of Hamburg, Hamburg, Germany

⁴Department of EECS and RLE, Massachusetts Institute of Technology, Cambridge, USA

MgO:PPLN : Pole=212µm, 3x3x L=20mm (damage threshold : 1 J/cm²) Pump : 1029.45nm Δλ<0.5nm, τ=300ps (Cryogenically cooled Yb:YAG amp) Idler : 1031.2nm

 Sub picosecond pulse train with spacing of a few picosecond t= 0 ps t= 2.5 ps

Pulse Sequences for Efficient Multi-Cycle Terahertz Generation in Periodically Poled Lithium Niobate

Koustuban Ravi^{1,3*}, Damian N. Schimpf¹ and Franz X. Kärtner^{1,3}

¹ Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg 22607, Germany ² Department of Physics and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Germany ³Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA koust@mit.edu

MgO:PPLN / THz generation

- MgO:PPLN : Pole=212µm, 10x20x L=40mm (damage threshold : 1 J/cm²)
- $\tau=1ps$, $\Delta t \sim 1ps$

マンレーロー限界を越えるためには カスケーディングが必須 hv (300THz) m

<u>分子研製超大型 PPLN</u>

5% 変換効率が得られれば 2J → 100mJ THz が可能なはず

Yb:PCF/YAG + OPCPA + MgO:PPLN

Compressor & PPLN

Silicon wafer with metal THz mesh filter x 3 Detector

Grating: 1750 lines/mm

冷却 PPLN

分離型ヘッドのパルスチューブを使用 (無振動)

高強度レーザー開発

Ti:Sapphire 用 DFC 励起レーザー実証試験

Ti:Sapphire 用 DFC励起レーザー実証試験

- 初期実証試験 @ KEK Thales α-10
 - 現状仕様 : 300mJ / 30fs = 10 TW ← 1 J @ SHG ← <u>2J</u>
 - Long Pulse: 1.5 J / 150 fs = 10 TW \leftarrow 5 J @ SHG \leftarrow <u>10J</u>
- 最終目標のDFC励起レーザー(J-KAREN相当)
 - 15 J / 30fs = 500 TW
 - \leftarrow 25 J before compression
 - ← 50 J @ 532nm ← <u>100 J</u> @ 1064nm (55 J for J-KAREN)

• 増幅率

- 8 kW x 4 (両方向On-Axis励起) x 250µs = 8 J / cm²

- G= 5 for L(Nd:YAG) = 1.3cm(1/e²) (2-passで50倍)

• Pump(885nm) Output 4 stack(32kW, 8J) \rightarrow 2 J \rightarrow 1 J @ SHG

DFC増幅器実証試験

• 1 cm^2 , $4 \text{ stack}(8.85 \text{kW x } 4 = 8.8 \text{J}) \rightarrow 2 \text{ J} \rightarrow 1 \text{J} @ \text{SHG}$

KEK版QCWレーザーダイオードスタック

- QCW LD Stack : 30万円/kW (Fiber Bundle の 1/5)
- 350W/bar × 25bar = 8.75 kW × 250µs > 2J/stack
- FACの精密アラインメントで均一な励起パターン
- 開発した安価な大電流パルスドライバ

励起光プロファイル

右からの励起

左からの励起

• 250µs x 120Hz = 3%を保証

2.1 絶対最大定格

瞬時でも超過してはならない限界値で示し、どの一つの定格値も超えてはならないものとする。

	項目	記号	定格	単位
パルス順電流		Ifp	350	А
ピー	ク光出力	$arPsi_{ ext{ep}}$	9.0	kW
パル	ス幅	$t_{ m w}$	250	μs
デューティ比		DR	3.0	%
逆電圧		$V_{\rm r}$	2.0	V
動作周囲温度		$T_{\mathrm{op}(\mathbf{a})}$	+5 \sim +40 $^{\pm1)}$	°C
保存温度		$T_{ m stg}$	$_{0}$ ~ +50 $^{\pm 1)$ $^{\pm 2)}$	°C
動作および保存湿度		_	50	%
冷	冷却水媒体	_	市水	_
却水条件	冷却水温度(冷却水 IN 侧)	_	+15 \sim +30	°C
	冷却水圧力 (ヒートシンク部)	_	0.3 注3)	MPa
14	冷却水流量 (全体)	_	$0.8 \sim 1.8$	L/min

10kW LD 用 600A QCW LD Driver (KEKで開発、長期運用実績有)

1、外 観

2、仕 様

(1)	AC電源入力	単相AC100V 50/60Hz 3A
(2)	DC電源入力	DC80V以下
(3)	出力電流	最大1200A(パルス幅:1.2ms)
(4)	パルス幅・繰り返し	デューティー 3%
		0. 25ms×120Hz~1ms×30Hz
(5)	冷却方式	25℃ 水冷(接続口径:Rc1/4)
(6)	外形	幅:260mm 高さ:149mm 奥行き:430mm

3、裏 面

LD Driver Circuit 2

PA85 200mA(CW)

APT

$$\frac{R_2}{R_5 + R_2} (V_+ - V_0) + V_0 = \frac{R_3}{R_6 + R_3} (V_- - V_0 - V_{in}) + V_0 + V_{in}$$

$$\frac{R_2}{R_5 + R_2} = \frac{R_3}{R_6 + R_3} = \frac{1}{a+1}$$

$$V_+ + aV_0 = V_- + aV_0 + aV_{in}$$

$$RI = V_+ - V_- = aV_{in}$$

$$\frac{R_2}{R_5 + R_2} (V_+ - V_0) + V_0 = \frac{R_3}{R_6 + R_3} (V_- - V_1) + V_1$$
$$\frac{1}{a+1} (V_+ - V_0) + V_0 = \frac{1}{a+1} (V_- - V_1) + V_1$$
$$V_+ - aV_0 = V_- - aV_1$$
$$V_+ - V_- = aV_{in}$$

600A QCW LD Driver

885nm Direct Pump 885nm だと励起LDのバー辺りの出力が大きい (従来 Yb:YAG 用に開発してきた 940nm と同程度、808nm の倍)

- ・吸収帯域が広く既存のLDバーで高効率
- 吸収係数 ~ 1.5cm⁻¹で On-Axis 励起が可能

Fig. 2. Absorption spectrum of 1 at.% Nd:YAG ceramic.

Required Input Energy for 2-pass amp

 $E_{pump} = \frac{P_{pump}}{A} T_{pulse} \left(1 - e^{-\frac{T_{pulse}}{\tau}} \right) \eta_{pump} \eta_{quantum}, \quad E_s = \frac{hv_e}{\sigma} : \text{ Saturation fluence.}$ $\frac{dE_{pump}}{dz} = \alpha E_{pump} e^{-\alpha z}, N_2 = \frac{dE_{pump}}{dz} / hv_{pump}, N_s = \frac{1}{\sigma}$ $g = \sigma_e N_2 + \sigma_a N_1 = \frac{\alpha e^{-\alpha z} P_{pump} T_{pulse} \left(1 - e^{-\frac{T_{pulse}}{\tau}}\right) \eta_{pump} \eta_{quantum}}{h v_{pump} A}$ $g_{L} = \int_{0}^{L} \sigma_{e} N_{2} dz = \frac{E_{pump} / hv_{pump} \left(1 - e^{-\alpha L}\right)}{E_{s} / hv_{e}} = \frac{N_{p}}{N_{s}}$ $11/21 \quad lte_{0} & e^{\beta E_{s} - K_{s}} e^{\beta E_{s} - K_{s}} e^{-E_{s} - E_{s}}$ $small \ signal \ gain : G = e^{g_{L}}, \ G_{0} = e^{\frac{N_{p}}{N_{s}}}, \ G_{1} = e^{\frac{N_{p} - (E_{1} - E_{0})/hv_{e}}{N_{s}}} = e^{\frac{N_{p} - N_{s} \frac{E_{1} - E_{0}}{N_{s}}}{N_{s}}} = G_{0}e^{-E_{1}/E_{s}}e^{E_{0}/E_{s}}$ $e^{E_0/E_s} - 1 = x_0, e^{E_1/E_s} - 1 = x_1, e^{E_2/E_s} - 1 = x_2$ $e^{E_1/E_s} - 1 = (e^{E_0/E_s} - 1)G_0 = x_1 = x_0G_0$: Frantz-Nodvik eq. $e^{E_2/E_s} - 1 = \left(e^{E_1/E_s} - 1\right)G_1 = \left(1 - e^{-E_1/E_s}\right)e^{E_0/E_s}G_0 = \left(1 - \frac{1}{1 + \left(e^{E_0/E_s} - 1\right)G_0}\right)e^{E_0/E_s}G_0 = \frac{x_0G_0^2\left(x_0 + 1\right)}{1 + x_0G_0}: \text{ for 2nd-pass}$ $G_{0}^{2}x_{0}^{2} + (G_{0}^{2} - G_{0}x_{2})x_{0} - x_{2} = 0, \quad x_{0} = \frac{-G_{0}^{2} + G_{0}x_{2} + \sqrt{G_{0}^{4} - 2G_{0}^{3}x_{2} + G_{0}^{2}x_{2}^{2} + 4G_{0}^{2}x_{2}}{G_{0}^{2}}, \quad E_{0} = E_{s}\log(x_{0} + 1)$

Required input energy for 2-pass amp

Saturation fluence : 0.5 J/cm² (0.66 J/cm² @ σ=28x10⁻²⁰)

Required input energy (J/cm2)

4-pump • 8.85 kW x 250us x 4 = 8.85 J pump

Nd:YAG 1.1%

885nm 透過率:10%

Preamp 用 DPSS module 808nm 1.2kW x 12個=14.4kW=3.6J DPSS module

Nd:YAG DFC 試験状況

3mm(Sapphire) + 0.65mm(Nd:YAG) x 20 stack \rightarrow 75mm

Ploss	ΔТ
16.4058	8 78.1228
15.3161	72.934
14.3722	68.4392
13.565	64.5954
12.8869	61.3662
12.3314	58.7209
11.8932	2 56.6341
11.5681	55.0862
11.3531	54.0624
11.2461	53.5529
11.2461	53.5529
11.3531	54.0624
11.5681	55.0862
11.8932	2 56.6341
12.3314	58.7209
12.8869	61.3662
13.565	64.5954
14.3722	68.4392
15.3161	72.934
16.4058	8 78.1228

Nd:YAG DFC

• 0.65t x 9 Nd:YAG + 2t x 10 Sapphire = 25mm

Nd:YAG DFC • 8.85kW x 250us = 2J pump

5Jモジュールの開発検討

NEDO用LD 1kW/barの実績有

2.1 絶対最大定格

S٦

瞬時でも超過してはならない限界値で示し、どの一つの定格値も超えてはならないものとする。

	項目	記号	定格	単位
パルス順電流		$I_{ m fp}$	800	А
۲°–	ク光出力	$arPhi_{ m ep}$	8.5	kW
パル	ス幅	$t_{ m w}$	1.0	ms
デュ	ーティ比	DR	1.0	%
逆電圧		$V_{ m r}$	2	V
動作周囲温度		$T_{ m op(a)}$	+5 \sim +40 $^{\pm1)}$	°C
保存温度		$T_{ m stg}$	$0 \sim$ +50 $^{\pm 1)$ $\pm 2)$	°C
動作および保存湿度		—	50 注1)	%
冷却水条件	冷却水媒体	_	市水	_
	冷却水温度(冷却水 IN 側)	_	+15 \sim +30	°C
	冷却水圧力 (ヒートシンク部)	_	0.3 注3)	MPa
14	冷却水流量(全体)	_	$0.8 \sim 1.8$	L/min

30'3

٤.71

180万円/stack(10bar) 18万円/750W

定格7.5kW

現在のモジュールは 300万円/stack(25bar) 12万円/350W

5J モジュールの開発

- 15mm x 15mm DFC
- 750W/bar × 27bar = 20 kW (現在の2.5倍)
 - 1.5mm ピッチ→ 2.5mm ピッチ
 - マイクロチャンネル冷却

FY2020

DFC励起 小型Ti:Sapphire レーザー構築

まとめ

・ 超高電界 (> 数100MV/m) の加速方式 – THz 加速

- 低密度プラズマによるレーザープラズマ加速

- そのためのレーザー開発 / THz発生
 - 2J 程度で必要十分, 50Hz 動作が必要
 - Yb 系レーザーでの実証実験
 - Nd系 → Ti:Sapphire or Nd系の広帯域DFCに期待 Nd:YAG I

プロト ステージ タイプ ゲート

Nd:YAG DFC : 1 cm² 2.5 cm² 励起 885nm LD stack:

8kW x 4 = 8J 20kW x 4=20Jx2

1064nm:	2 J	10J
532nm:	1J	5 J
Ti·Sannhire	•· 0 5 I	2 51

Ti:Sapphire: 0.5 J 2.5J

10 TW 50 TW